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An identity generalizing the Prager-Synge relationship [l, 21 in linear elasticity 
is deduced for a certain class of nonlinear elasticity laws. It permits estimation 
of the energy norm of the difference between some statically admissible stress 
field u and the true field a0, as well as between some kinematically admissible 
displacement field u and the true field u”, in terms of the energy norm for the 
diffefence between the fields u and (I (u) (a (u) is the stress field generated by 
the field II). By using this identity, under definite constraints, it is proved that 
the root-mean-square value (over the volume of a plate) of the error in the solu- 
tion of the plate equations derived from the volume problem by means of the 
Kirchhoff hypothesis, does not exceed ch’l*, where c is a constant and h is the 
relative thickness. The Prager-Synge relationship [l, 21 was used in [3, 43 to es- 
timate the error in linear shell theory. The results are related to [l - 73. 
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1. Let the specific strain energy be 183 

A (4 = ‘4 K (es)s + A, @) (1 .I> 
8 = {Bij}, 80 ZEG l/s (Eii), l@E S (2-l&ij’8ij’)fh, 8ij’ S 8ij - 6i’Q 

Here e is the strain tensor, e. is the mean elongation, Cpc is the shear strain intensity, 
6,j is the Kronecker delta, K is the modulus of volume expansian, A, (I) is a func- 
tion given for T E [0, co) which is twice differentiable and satisfies the conditions 

AZ = dA, I dz = 0, z = 0, 4G, < #A, I d+ < 46, (1.2) 
VTE[O, m) 

G,, G, > 0 are constants constraining the limits of variation of the shear modulus. 
Let us introduce the notation 

(a, b) s aijbij, 1 a 1 s (a, a)‘/2 (a = {aij}, b = {btj}j 

Lemma 1. Under the conditions (1.2) the function A (8) is strictly convex, and 
moreover, for any e = {Q}, e1 = {.$) the estimates 

y 1 e - 19 I2 < (VA (8) - VA (e’), e - s’) < x 1 e - ,l I 2 

VA (8) z {dA (e) / &,}, 0 = min {3K, 26,) 

x = max {3K, 2G,) 

(1.3) 

y I E - d 1 < I VA (e) - VA (el) j < x I e - d 1 (1.4) 

are valid. 
Let an elastic body occupy a domain V of the variables (x1, zs, zs) and let s be 

the piecewise-smooth boundary of the domain V. We consider the following elasticity 

problem : 

u = (% % k), Eij (u) = 2-l (Ui, j + Uj, i), & (4 = l&ij (4> (1.5) 

(I = {Cij} = VA (8) (1.6) 

Dii,j +fi =O, i ~:i,2,3 (1.7) 

cJijnj = Fi, i =_ 1, 2,3 on SF (1.8) 

ui =o, i-1,2,3 on &, s = SF u s, (1.9) 

From (1.3) the elasticity law (1.6) is uniquely reversible ; it is known from [g] that an 
inverse mapping is given by using the dual function A * (u) 

8 = VA* (a) G {dA * (u) / aO,j} 

where if e and o are connected by the relationship (1.6) or (1.10). then 

A* (a) + A (4 = (a, s) 

It can be verified that 

A* (a) = (2K)-1(~,)2 + As* (2%) 

00 3 ‘/a ((Tii), $0 E (2-lUij’oij ) 9 ’ vr (Tif’ ES OiJ - 6i’Oo 

(here As* (t) is the dual function of A, (7)) and the following inequalities are 
for any u, o1 

x-l 1 u - u1 I 2 < (VA*1 (a) - VA* (al), in - 01) < ?-I ( (J - ul 12 

x-l~u-ul~<~VA*(u)-VA*(ul)~,(y-‘~u-cr~ 

(1.10) 

(1.11) 

valid 

(1.12) 

(1.13) 
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Let a E Ls (v) be the tensor field, then from (l-4),( 1.13) the elasticity law (1.6) is 
a one-to-one conformal continuous mapping comparing the field fT E Ls (v> to every 

8 EZ .&s (v) ; the inverse mapping (1.10) is also continuous. 
Theorem 1 [lo- 123 (minimum total energy principle). Let 

fi E Gs (v), Fi E Ls (SF), i = i, 2,~ (1.14) 

We introduce the space H of admissible displacement fields and the total energy fimc- 
tional 

u2, as), ui EE Wsl (v), ui = 0 on S,, i = (1.15) 

m(u) = A (E (U)) dV - J _fiUidV - J Fluids 
V SF 

(1.16) 

Then there exists a single field u” providing the m~imum of the functional tf, (u) in 

the space H. 
We assume 

e” EE 8 (u”), tr” z VA (8) (1.17) 

then for any field u E H the identity 

i 
(a”, e (u)) dv = j fiuidlr + . 

V A 
FiuidS (I, 18) 

F 
is valid. 

Definition 1. We call the field u = { oii} statically admissible if CJ E L,(V), 

oij = oji and the identity 

J (0, a (u)) dV = J fit+dV + [ FiuidS (1.19) 
V f& 

is valid for any u E H. 
The set of statically admissible fields will be denoted by P and 0” E P from 

(1.18). 
N o t e 1. If the field o is statically admissible in the ordinary sense, i. e. oij are 

diffe~ntiable and satisfy the equilibrium equations (1.7) and the boundary conditions 
(1.8). then o is statically admissible in the sense of the Definition 1. 

Lemma 2. The set P is convex and closed in L, (V). 
Proof. The convexity of P is evident, let us prove it closed, i.e. we prove that if 

the sequence on = {oijn} belongs to P and converges to some field U* = {Uij} in 
L, (V) as n -+ 00 , then (I* E P. Since a” E P, then oiln = oji” and from the 
condition 11 ox - U* jtLe(v) -+ 0 them fOllOWS that cTij* = Oji** 

We. substitute on into (1.39) and pass to the limit as n --t oo for fixed u, we obtain 
that o.* satisfies the identity (1. 19), i. e. Q* E P. 

Theorem 2 (Castigliano’s principle). We introduce the additionalstrain 
energy functional 

E*(o = ,r A*(o)dV (1.20) 

Then there exists a single stress field providing the minimum of the functional E* (CF) 

on P, namely the field o”, and the following equality is valid 

@ (UO) = - E* (a”) (1.21) 

Proof. From (1.12) the operator VA* (0) is coercive in L, (V), from which 
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L13] the existence and uniqueness of the minimum follows. Let us prove that the field 
up satisfies the identity 

$ 
(VA* ((10), G - CC) dTr = 0 (1.22) 

for any 0 E P . In fact, from (1.17) - ( 1.19) 

$ (VA” (ff), u - aO)dV = $ (8, u -- UC) dV = 

f fiUi%w t_ J E”iui”dS - f (8, 0”) dV = 0 
ir SF tf 

From [13], the identity (1.22) is a necessary and sufficient condition for the minimum. 
From (1. l?), (1. ll),( 1.20) and (1.18) 

Cp (u”) = (- A* (a’) + (8, ~2’)) dV - f&dV - s F,ut*dS = 
SF 

- E* ((JO) + J (a”, 8) dV - 
V 

ftui”dV - si Fiui”dS = - E* ((To) 

Theorem 3. I.etaEPanduEH,weset 

u (u) zz VA (e {u)) (1.23) 
The identity 

E* (u) - E* (a”) f @ hj - 0 (u”) = E* (u) -E* (a (u)) - (1.24) 

s _, (8 (4, u - 0 (u)) dV 

is valid. ’ 
P r o of . Because of (I. 21) it is sufficient to prove that 

ecu)=-E*(o(u))-$(s(u),o--o(u))dV 

From (1.13), (1.11) and (1.16) 

(D(u) = - E=* (@ (~1) + 
1 

(8 (u), G (u)) dV - l fiuidv - 
1 

d FiuidS = - E* (U(U~) i- f (8 (a), n(u)) dV - s (8 (u), c) dV 
V V 

this latter equality follows from (1. 19). 

Note 2. For the linear elasticity law 

E” (a) - E* (a’) zz= E*(u -(To), CD(U) - CD (u’) = E* (G (u) - 0’) 

#Jp (6) - E* (6 (u)) - .i’ (e (u), t7 - 63 (UN dV = I?* (@ - c (u)) 

and the identity (1.24) agrees withVthe Prager-Synge relationship [I, 21 
E* (a - a’) + E* (a (u) - a”) = E* (a - (r (u)) 

and the identity (1.24) agrees with the prager-Synge relationship [l, 23. 
Note 3. The identity (1.24) is valid under weaker assumptions than (1. l), (1.2), 

for example ft can be assumed that A (a) =: ~41 (aO) + A WJ, where A, (z), -4, (r) am 
strictly convex continuously differentiable functions satisfying the conditions 

Ai =dAi/dT=O,T=O,i=1,2 

ai t_ biT pi-1 
Pi-1 

(1.25) 
- <dAi / dT < Ci + diT i = I,2 

ai, ei > 0, bi, di > 0 = con&, 1 < ~2 < ~1 
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For example the function 

A (e) = ‘/a K (ao)’ + aa ($)P, i < p < 2 

satisfies the constraints (1.25). Here p1 = 2, pa = P- 

The identity (1.24) is true even if A (e) is a continuously differentiable strictly con- 
vex function, A = VA = 0, z = 0 and the following inequalities are satisfied 

- a+ blaIP<(VA (e),a)6c+dlalP 
a, c > 0, b, d > 0 = const, p > 1 

Lemma 3. Let (I E P, u E H. Under the conditions (1.2), the estimates 

(1.26) 
can hold. 

Proof. The inequalities 
E* (a) - E* (a“> > & 1) (J - t~~I$w) (1.27) 

@ (4 - cf, bf) > + 118 (4 - qi*(V) 
follow from (1.12), (1.3) and Theorem 10.4 [13]. Since the mappings VA (8) and 

VA* (u) are reversible, then e (u) - VA* (a (u)), hence 

E* (a) - E* (u(u)) - j (e(u), u - u(u)) dV = (1.28) 

‘d 
\ dt E* (a (u) + t (a - u (u))) dt - 1 (VA* (a (u)), u - u (u)) dV = 

0 V 

1 

s s at +(VA* (u(u) + t (u - (J W-VA* (a (UN, t (a--a(uNW’< 
0 v 

The inequality in (1.28) follows from ( 1.12) while (1.26) follows from (1.27) (1.28) 
and (1.24). 

2, Tha plate rqurtionr, Let us consider the flexure of a rigidly clamped, 
constant-thickness plate, symmetrically loaded by a load applied to the upper and lower 
faces. The plate occupies the domain 

Vh={(x,2s)Ix=(51,2,), xEzf& -d~x,<d) 

Here S2 is the middle plane, I is its characteristic dimension, 2d is the plate thick- 

ness, h = 2d / 1 is the characteristic relative thickness, then S, is the side surface of 
theplatein(l.7)-(1.10),(1.14)-(1.6), SF = P+ U Q-,where Q+, Q-arethe 
upper and lower faces of the plate 

fl = fa = f. = 0, Fl = F, = 0 on SF 

F3 = Fh I 2 on P’, F3 = -Fh I 2 on 8- 

It is emphasized that the normal load Fh in (2.1) depends on h. 

(2.1) 
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Let us derive the plate equations by using the Kirchhoff hypotheses. We introduce the 
notation: if a = (aij} is a tensor, i, j = 1, 2, 3, then a = {a,, a,}, where 

a1 = @llP %a, %9 %A a9 = bl3, u31, a23, u32, a33) (2.2) 

If the tensor a is provided with some superscript, then al, a, are provided with the same 

superscript, for example alh, ash correspond to the tensor a” = {c@} according to 

(2.2). 
Let us write the elasticity law (1.6) in the form 

(J = aA (El, 82) _ a‘4 a‘4 a.4 a‘4 
1 = i 

--- 
ae1 - ' ae1z ' a.521 ' am2 aelI I 

02 = 
aA(eLe2) = a‘4 aA aA aA a‘4 

aa _aelS 1 -zG-' ZG-1 TGL' -1 aess 

(2.3) 

We set a, = 0 in (2.3) according to the Kirchhoff hypotheses, and analyze (2.3) for 
fixed 8r as a system of equations in 8s. Using (1.3) and (1.4) we can show that this sys- 

tem is uniquely solvable for any 8r and its solution es (81) has the form 

%l (al) = (0, 0, 0, 0, Q (81)) (2.4) 

where Q (Q is continuous and satisfies the constraints 

I Q @I) I < z-t / Y 1% I (2.5) 

(811, 8,) = i l %j %j, I El I = (fh, %)“’ 
i, j=l 

Substituting (2.4) into A (a), we obtain a function of four real arguments 

D (al) = A (e,, 0, 0, 0, 0, Q (e1)) 

We use the Kirchhoff kinematic hypotheses according to which 

ui (x, 23) = - w,i (x) x3, i = 1, 2, u3 (x7 x3) = w (4 

(2.6) 

(2.7) 

Substituting (2.7) into (1. 5j, we obtain 
a2W a2W 

- azzazl 1 ax22 1 
(2.8) 

Replacing A (e (u)) in (1.16) by D (el (w)) and substituting the hypothesis (2.7) into 
the Linear part of (1.16) by taking account of (2.1). we obtain the total energy functional 

of a thin plate 
y.p/z (w) = J D (- P (w) x3) dxdz, - s F”wdx 

vh 62 

Lemma 4. D (el) is twice continuously differentiable, strictly convex and for 

any e,, eI1 the following estimates are valid: 

Y I El - El1 J ' =G PD (4 - V D (q'), 81 - ell> < (2.9) 
x 1 e, - 811 I 2 

VD (&I) - {aD /den, dD /de,,, 80 IL&, dD / do,,} 
(% = {%I, 812, 821, 822)~ El1 = {&lll, e12l, E211, Qzl}) 

Also valid are the equalities 
D (-eJ = D (4 (2.10) 
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VD (el> = aA (q, 0, 0, 0, 0, Q @J) / 8% (2.11) 

Let I’ be the boundary of Q ; we introduce the space of admissible deflections 

W,z~o(Q) = {w 1 w E W,z(Q). w = au,/ dn = 0 on ) 

Theorem 4. There exists a unique function wh E Ws2~0 (a) which provides the 

minimum of the functional Yh (w) on W22~o (Q). 
Because of Lemma 4, the proof follows from [14]. 
We introduce the notation 

6h = {&j_h}, 6ih = e, (Wh) = -p (wh)2s, 6,” z e2 @ih) = (2.12) 

(0, 0, 0, 0, Q (bh)) 
ah = {a$}, czlh E? v D (tq), u,h G 0 (2.13) 

According to (2.12), (2.13), the tensors &h, cch yield the strain and stress in the plate 
equations. There follows from (2.11)) (2.13) and the definition (2.4) that 

(ICih = aA @,h, 6,h) / ae,, CCah = 0 = &4 &h, 6,h) ! ae, 

I.e., 
a” = V A (eh) (2.14) 

3, Error r~tfmater of the plate equationa. The idea for obtaining the 
estimates borrowed from [3, 41, is that two fields are constructed by means of the solu- 

tion wh, Clh, ah of the plate equations: the statically admissible stress field u E P 
and the kinematically admissible displacement field u E H, where the norm of the 
difference Q - u (u) will admit of an explicit estimate in terms of the parameter la 
and the derivatives of wh, and moreover,(l. 26) is applied. 

Let us make the change of variable z3 = hz, then the domain l/‘h is mapped into the 
domain Vr = {(x, z) 1 x E Q, --I / 2 < z < I / 2). If the function cp is given in 
vh, then we shall denote the function & given in vi by the formula g(x, 2) = cp (x, 
he) by the same symbol q. Evidently 

11 cp b,(vh) = h’lr II $ IILGQ (3.1) 

The final estimates will be obtained in the norm of L, (VI) (and not L, (Vh)), since 
the norm in La (VI) does not depend on h. 

The function wh satisfies an identity for any w E Ws2*o (B) 

s 
(VD(--((wh)z,),--((w)s,)dxdz,= Fhwdx s 

(3.2) 

vh 
62 

Substituting w = wh into (3.2), using (2.9) for erl = 0 and integrating (3.2) with 
respect to xs, we obtain 

a 

(p (Wh), p (w”)) ax G \ Fhwhdx 
Ll (3.3) 

The estimate 
II d llwsc~~ < +- u Fh IlLm (3.4) 

follows from (3.3) and from the imbedding theorems [15]. Here and henceforth the sym- 
bol c denotes different constants which are independent of h,. 

The estimates 

II bh IIWI) G r/p + Fhjlk(nb (3.5). 
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follow from the definitions (2.12). (2.13) and (3.4), (2.5), (2.14), ( 1.4), (3. 1). Let Fh 
be representable as Fh = ha@, and 

II Qh IIW-U f %t cp = const (3.6) 
Then estimates with constants independent of h follow from (3.4) - (3.6) 

We propose more, namely, let wh E C4 (@) (W is the closure of the domain Q), @, 
ah E Ca ( vhc) and estimates with constant cp independent of h are valid 

(3.7) 

(3.8) 

i,i=1,2,3, n,m=1,2 

a2aiih 
p*jy=+, Ia,:,,,l<~, - I I *CF 

ax,ax, \<y; i,j,n,m=l,2 13sg) 

Theorem 5. Let rECm, A (e) satisfies(l.1),(1.2)and A,($)asafunc- 
tion of the nine real arguments eij’ is quadruply continuously differentiable with re- 
spect to eil’ and the following estimates are valid 

aSA M,) MI 
aE&;.aE~, G I+$, ’ 

i,i,k,s,m,n=l,2,3, Mr=const 

a4-4‘2 WJ 

a8~iaEhsa8~,ae~, <MS,' i,j,k,s,m,n,p,q=-1,2,3. Mz=const 

II 4’ II cvc) < cq, cq = const 

Then wh, ah, ah satisfy the constraints (3.7) - (3.9). 
The proof is not presented because of its awkwardness, we just note some fundamental 

points. 
From (3.2) the function whis a generalized solution of a quasi-linear fourth order dif- 

ferential equation in the domain 52 

,il+[ \ - aD(--p(W)x3) z&,] = Fh 
1 j 

aEij 
a 

(3.10) 

w = i3w I dn = 0 on r 

Sufficient condition for which the generalized solution of (3.10) is regular are known 
from [12, 16, 1’71; using the conditions of Theorem 5, it can be shown that (3.10) sa- 
tisfies these sufficient conditions, from which we obtain that wh is a classical solution 
of (3.10). i.e. wh E C4 (Qc), and satisfies (3.10) ; furthermore, using the definition 

of the fields hh, ah and the conditions of Theorem 5, we can prove (3.7) - (3.9). 
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An example of the elasticity law satisfying the conditions of Theorem 5 is 

As (‘ke) = 2G, ($>“Ll + G, (qJ2(1 + G, (q~e)~)-~l 

Henceforth, compliance with (3.7) - (3.9) is assumed, 
We construct a statically admissible field (T = {oil} “close” to cc’. We set 

c+j = aijh, i,i=1,2, 
Qi3=a3i= - j: i Qij,j(X,T)dr, i-_ 1,L (3.11) 

-d j=l 
% 2 

633 = -Jr, G3i,i(X,T)dZ 

0 i=l 
(3.12) 

The stresses u2 are obtained from (TV by integrating the equilibrium equation (1.7). We 
verify that the field (J satisfies the boundary conditions (1.8) on Q+, Q-. From (2. lo), 
(2.12),(2.13) the stresses or are odd in 163, hence oi3 = oQi are even in zs, i = 1, 2, 

and (Ji3 = 03i = 0 on Cl+, W, i = 1, 2 from (3.11). 
The stress 033 is odd in zs,hence 

d 2 

k33(X, d) = - 63i,i(X, z)dz = 

d 

s (d _ x3) i “w.;l 4 
2 “j 

da, = 
-d i, j=l 

i il + t [ f - aD (-- ’ @“) xs) x,dx, ] = p” 
-d 

aeij 

from which u3s (x, t d) = t Fh / 2, therefore, u E p. 
From (3.11),(3.12),(3.9) we obtain (mea V is the Euclidean measure of the domain 

VI II u - ahkl(v,, = 11 u2jjLP(vh, < T (mes V)‘iz < 
xcF (mes Q)'/* 

ha/o (3. 13) 
+r 

We construct the field u E H so that e (u) “differs slightly” from 6h, namely, let 
us set 

Ui (x, 23) = - W,ih (X) 23, i = 1, 2* (3.14) 

u3(v3) = d(X) + qp(x)Oh(x,z3) 

f-%&x3)= qs:3(X,r)dl 

0 
(3.15) 

Here Q (x) is a smooth function finite in 62 , equal to unity in the subdomain 61, (Q,, 
consists of points at a distance more than p from the boundary) and such that 

O<rlfY(x)\<l, Iv%(x)I<c/P (3.16) 

According to condition (3.8) 6s3h is continuously differentiable with respect to zr, 
5, hence u E H and it follows from (3.14), (3.15),(2.12) and (2.8) that: 

&ij(U):= Gijh, i,i=1,2, %3(u) = &3i(u) = qp,ifJh + IJ$,~~, i =1,2 

&33(U) = %(X)%3 
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Prom (3.8) and (3. x5), 1 6’ 1 < falcp I y, 1 ‘@‘,ih 1 < hlcp / y, i = 1, 2, thenwe 
obtain because of (3.16) 

lx&g;1 1 < ~cw-‘(p-” + 1>, x Gc Qnpt I Ei3 WJ\<Qwl 

P', 
i=1,2 

Hence 

II ~i3wll;cv,,< +P (p-" + 1) h'lzp'~~ -j- h"lz +(l mes Qz)‘Ia (3.17) 

The functions eas (u) and 6,3h agree for x E Q,, hence we obtain from (3.8) 

‘11 ~33 (u) - $3 jJ~a(v~) < + h'Wiz (3.18) 

We set p = h, then it follows from (3.17) and (3.18) that 

It also follows from (3.19),(2.14) and (1.4) that 

(3.20) 

and from (3.13) and (3.20) that 

I o (u) - o JIL*(V$ \ 
%Cp 

<-h ?l. (3.21) 

Using (3.21), (1.26) and (3. l), we obtain the final error estimates of the solution of the 
plate equations (as before, e?, o” is the solution of the spatial problem of elasticity) 

l]o” - Uh j&{v,) < C (+)” CFh“' 
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In the general case, the determination of the unloading wave shape [l] in the the- 

ory of elastic plastic wave propagation is reduced to the solution of a functional 
equation of complex structure. A characteristics method [2] is proposed for the 
approximate co~~ction of the unloading wave, in particular loading cases for- 
mulas are obtained to determine its initial slope [3] and the next derivatives at 
the initial point [4 - S]. An investigation of the general properties of an unload- 
ing wave is given in [7]. It is shown that as the load tends to zero asymptotically, 
the unloading wave at the end of a semi-infinite bar has an asymptote with a 
slope determined by the elastic wave velocity. 

An ~vestigation of the ~nctional equation is given in this paper and a method 
of solution of this equation in the form of a power series is proposed. This ap- 
proach to the problem permits obtaining both known and some new results. In the 

general loading case, formulas are obtained to determine the initial slope of the 
unloading wave and a method of determining the next derivatives at the initial 
point is indicated. Conditions are found for linear hardening for which the unr 
loading wave is a straight line. The existence of an ~ympto~.~fferent from 
those mentioned in [7] is proved ; it is shown how to continue the solution to ad- 
jacent sections by means of some known section, and an unloading wave in a 
material with delayed yielding is investigated. 


